Publications
2024
- FAIRsharing.org: MIT Nanosafety; Minimum Information Table for the Safety of Engineered Nanomaterials, FAIRsharing ID: https://fairsharing.org/5228, Last Edited: Tuesday, February 13th 2024, 16:00, Last Accessed: Friday, March 8th 2024, 13:51
2023
- Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF and Bouwmeester H, Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. Front.Toxicol 5:1112212 (2023). https://doi.org/10.3389/ftox.2023.1112212
- Leibniz Research Alliance Advanced Materials Safety, Abstract book of the conference „Advanced Materials Safety 2023“. https://doi.org/10.5281/zenodo.10276099
2022
- Joppien M, Westphal H, Stuhr M and Doo S S Microplastics alter feeding strategies of a coral reef organism. Limnol. Oceanogr. Lett, 7: 131-139 (2022). https://doi.org/10.1002/lol2.10237
- Joppien M, Westphal H, Chandra V et al. Nanoplastic incorporation into an organismal skeleton. Sci Rep 12, 14771 (2022). https://doi.org/10.1038/s41598-022-18547-4
- Elberskirch L, Binder K, Riefler N et al. Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety. Part Fibre Toxicol 19:1 (2022). https://doi.org/10.1186/s12989-021-00442-x
- Elberskirch L, Sofranko A, Liebing J, Riefler N, Binder K, Bonatto Minella C, Razum M, Mädler L, Unfried K, Schins RPF et al. How Structured Metadata Acquisition Contributes to the Reproducibility of Nanosafety Studies: Evaluation by a Round-Robin Test. Nanomaterials 12 (2022) 1053. https://doi.org/10.3390/nano12071053
- Busch M, Bredeck G, Waag F, Rahimi K, Ramachandran H, Bessel T, Barcikowski S, Herrmann A, Rossi A, Schins, RPF, Assessing the NLRP3 Inflammasome Activating Potential of a Large Panel of Micro- and Nanoplastics in THP-1 Cells. Biomolecules 12 (2022) 1095. https://doi.org/10.3390/biom12081095
Selected publications from Leibniz Research Alliance Nanosafety
- Schmitz C, Welck J, Tavernaro I et al., Mechanical strain mimicking breathing amplifies alterations in gene expression induced by SiO2 NPs in lung epithelial cells. Nanotoxicology 13:9 (2019) 1227; https://doi.org/10.1080/17435390.2019.1650971
- Stöckmann D, Spannbrucker T, Ale-Agha N et al., Non-Canonical Activation of the Epidermal Growth Factor Receptor by Carbon Nanoparticles. Nanomaterials 8:4 (2018) 267; https://doi.org/10.3390/nano8040267
- Kraegeloh A, Unfried K, The Safety of Nanomaterials on Molecular and Cellular Scale. in: The Nanomaterials Handbook, Second Edition, edited by Yury Gogotsi, 2017, CRC Press; https://doi.org/10.1201/9781315371795-22
- Gomes SIL… Pokhrel S, Mädler L et al., Advanced machine learning techniques on in vivo biological responses to a TiO2 NP library (UV and non-UV exposure) – 11 Fe-doped TiO2 NPs, 122 NP descriptors (atomistic and mesoscopic modelling), 44 biological measures. Nanoscale 13 (2021) 14666; https://doi.org/10.1039/D1NR03231C
- Peng G… Mädler L, Pokhrel S et al., Redox Activity and Nano-Bio Interactions Determine the Injury Potential of Metal Oxide Nanoparticles towards Zebrafish, ACS Nano 14 (2020) 4166; https://dx.doi.org/10.1021/acsnano.9b08938
- Bredeck G, Kämpfer AAM, Sofranko A et al., Effects of Dietary Exposure to the Engineered Nanomaterials CeO2, SiO2, Ag, and TiO2 on the Murine Gut Microbiome. Nanotoxicology 15:7 (2021) 934; https://doi.org/10.1080/17435390.2021.1940339
- Busch M, Kämpfer AAM, Schins RPF, An Inverted in Vitro Triple Culture Model of the Healthy and Inflamed Intestine: Adverse Effects of Polyethylene Particles. Chemosphere 284 (2021) 131345; https://doi.org/10.1016/j.chemosphere.2021.131345
- Dekkers S … Lynch, Schins RPF et al., Differences in the Toxicity of Cerium Dioxide Nanomaterials after Inhalation Can Be Explained by Lung Deposition, Animal Species and Nanoforms. Inhal Toxicol 30:7-8 (2018) 273; https://doi.org/10.1080/08958378.2018.1516834
- Fleddermann J… Tavernaro I, Kraegeloh A, Distribution of SiO2 Nanoparticles in 3D Liver Microtissues. Int J Nanomedicine 14 (2019) 1411; https://doi.org/10.2147/IJN.S189888
- Kämpfer AAM, Busch M… Schins RPM, Model Complexity as Determining Factor for In Vitro Nanosafety Studies: Effects of Silver and Titanium Dioxide Nanomaterials in Intestinal Models. Small 17:15 (2021) 2004223; https://doi.org/10.1002/smll.202004223
- Kämpfer AAM, Busch M, Schins RPF, Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 33:5 (2020): 1163; https://doi.org/10.1021/acs.chemrestox.0c00079
- WELDOX II Study Group, van Thriel C et al., Are Multitasking Abilities Impaired in Welders Exposed to Manganese? Translating Cognitive Neuroscience to Neurotoxicology. Arch Toxicol 91:8 (2017) 2865; https://doi.org/10.1007/s00204-017-1932-y
- Rossner C, Fery A, Planet-satellite nanostructures from inorganic nanoparticles: from synthesis to emerging applications. MRS Commun 10 (2020) 112; https://doi.org/10.1557/MRC.2019.163
- Peuschel H, Ruckelshausen T, Cavelius C, Kraegeloh A, Quantification of Internalized Silica Nanoparticles via STED Microscopy. BioMed Res Int (2015) Article ID 961208; https://doi.org/10.1155/2015/961208
- Astanina K, Simon Y, Cavelius C, Petry S, Kraegeloh A, Kiemer AK, Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomater 10 (2014) 4896; https://doi.org/10.1016/j.actbio.2014.07.027
- Corrigendum to “Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production” Acta Biomater 12 (2015) 363; https://doi.org/10.1016/j.actbio.2014.11.009
- Hoppstädter J, Seif M, Dembek A, Cavelius C, Huwer H, Kraegeloh A, Kiemer AK, M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6 (2015) 55; https://doi.org/10.3389/fphar.2015.00055
- Autengruber A, Sydlik U, Kroker M, Hornstein T, Ale-Agha N, Stöckmann D, Bilstein A, Albrecht D, Paunel-Görgülü A, Suschek CV, Krutmann J, Unfried K, Signalling-Dependent Adverse Health Effects of Carbon Nanoparticles Are Prevented by the Compatible Solute Mannosylglycerate (Firoin) In Vitro and In Vivo. PLOS ONE 9:11 (2014) e111485; https://doi.org/10.1371/journal.pone.0111485
- van Berlo D, Wilhelmi V, Boots AW, Hullmann M, Kuhlbusch TAJ, Bast A, Schins RPF, Albrecht C, Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88 (2014) 1725; https://doi.org/10.1007/s00204-014-1220-z
- Kucki M, Cavelius C, Kraegeloh A, Interference of silica nanoparticles with the traditional Limulus amebocyte lysate gel clot assay. Innate Immunity 20:3 (2014) 327; https://doi.org/10.1177/1753425913492833
- Büchner N, Ale-Agha N, Jakob S, Sydlik U, Kunze K, Unfried K, Altschmied J, Haendeler J, Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes. Experimental Gerontology 48:1 (2013) 8; https://doi.org/10.1016/j.exger.2012.03.017
- Kraegeloh A, Suarez-Merino B, Sluijters T, Christian Micheletti, Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach. Nanomaterials 8:4 (2018) 239; https://doi.org/10.3390/nano8040239
- Soeteman-Hernandez LG… Kraegeloh A, Tavernaro I et al., Safe Innovation Approach: Towards an Agile System for Dealing with Innovations. Materials Today Communications 20 (2019) 100548; https://doi.org/10.1016/j.mtcomm.2019.100548
- Dekkers S, Tavernaro I… Kraegeloh A et al., Safe-by-Design Part I: Proposal for Nanospecific Human Health Safety Aspects Needed along the Innovation Process. NanoImpact 18 (2020) 100227; https://doi.org/10.1016/j.impact.2020.100227
- Tavernaro I, Dekkers S… Kraegeloh A et al., Safe-by-Design Part II: A Strategy for Balancing Safety and Functionality in the Different Stages of the Innovation Process. NanoImpact 24 (2021) 100354; https://doi.org/10.1016/j.impact.2021.100354
- Kammerer Y et al., The Role of Internet-Specific Justification Beliefs in Source Evaluation and Corroboration During Web Search on an Unsettled Socio-Scientific Issue. J Edu Comput Res 59:2 (2021) 342; https://dx.doi.org/10.1177/0735633120952731
- Gottschling S, Kammerer Y, Thomm E, Gerjets P, How Laypersons Consider Differences in Sources’ Trustworthiness and Expertise in their Regulation and Resolution of Scientific Conflicts. Int J Sci Ed B 10:4 (2020) 335; https://doi.org/10.1080/21548455.2020.1849856
- Gottschling S, Kammerer Y, Gerjets P, Readers’ Processing and Use of Source Information as a Function of Its Usefulness to Explain Conflicting Scientific Claims. Discourse Process 56:5-6 (2019) 429; https://doi.org/10.1080/0163853X.2019.1610305